85 research outputs found

    Landslide monitoring by fixed-base terrestrial stereo-photogrammetry

    Get PDF
    Photogrammetry has been used since long to periodically control the evolution of landslides; however, true monitoring is reserved to robotic total stations and ground based InSAR systems, capable of high frequency, high accurate 24h/day response. This paper presents the first results of a fixed terrestrial stereo photogrammetric system developed to monitor shape changes of the scene. The system is made of two reflex cameras, each contained in a sealed box with a control computer that periodically acquires an image and send it to a host computer; once an image pair is received from the two cameras, the DSM of the scene is generated by image correlation and made available for archiving or analysis. The system has been installed and is being tested on the Mont de la Saxe landslide, where several monitoring system are active. Some instability of the camera attitude has been noticed and is corrected with an automated procedure. First comparisons with InSAR data show a good agreement

    INFLUENCE OF ILLUMINATION CHANGES ON IMAGE-BASED 3D SURFACE RECONSTRUCTION

    Get PDF
    Abstract. The paper investigates the influence of lighting conditions on image-based 3D surface reconstruction, with particular focus on periodic photogrammetric surveys for monitoring and 3D mapping applications. The analyses focus on the accuracy and completeness of each DSM and the daily and hourly repeatability of repeated photogrammetric surveys. Three test sites with rock slopes with a different orientation to the sun and different slope characteristics (slope, pattern, amount of outcropping elements that cast shadows) have been considered to ensure that results can give a general indication of the behaviours in different light conditions. In addition, a simulated virtual test site is included in the study to allow controlled image acquisition and evaluate the effect of the sun's inclination on the DSM accuracy without influence of other weather conditions. The results show that, although there is an optimal time for the acquisitions, if particularly unfavourable light conditions are excluded, the accuracy reduction with time variation is always below 30%. The repeatability analyses by day and by time highlight a good consistence between DEMs belonging to the same day but acquired at different times and, also, between DEMs acquired at the same time but on different days. This suggests that reliable results can be obtained during continuous monitoring of, for instance, rock faces to identify rockfalls

    MULTI-TEMPORAL IMAGE CO-REGISTRATION OF UAV BLOCKS: A COMPARISON OF DIFFERENT APPROACHES

    Get PDF
    Abstract. Traditionally, data co-registration of survey epochs in photogrammetry relied on Ground Control Points (GCP) to keep the reference system unchanged. In the last years, Unmanned Aerial Systems (UAV) are increasingly used in photogrammetric environmental monitoring. The diffusion of affordable UAV platforms equipped with GNSS (Global Navigation Satellite System) centimetre-grade receivers might reduce, but not eliminate, the need for GCP. Conversely, if GNSS-assisted orientation cannot be used or if additional ground control and reliability checks are required, alternatives to repeated GCP survey have been proposed, taking advantage of Structure from Motion (SfM) photogrammetry. In particular, co-registering different epochs image blocks together, identifying corresponding features, has been demonstrated as a viable and efficient approach. In this paper four different strategies easily implementable in a generic commercial photogrammetric software are presented and compared considering three different test sites in Italy subject to different amounts of environmental changes. The influence of the amount and distribution of inter-epoch corresponding points on the accuracy of the reconstruction is investigated. The results show that some of the tested strategies obtains very good results and can be used (although not needed) also in RTK centimetre-grade UAV surveys, leveraging the additional information coming from previous epochs survey to actually increase the survey accuracy and reliability

    Performance measurements of energy storage systems and control strategies in real-world e-bikes

    Get PDF
    The paper presents a measurement campaign (electrical, thermal and user comfort) for the performance characterization of energy storage systems in real-world electric bicycles. Specific sensors were added to characterize three vehicles which differ for electric motor, energy storage system size and control strategies. The controller can implement energy recovery strategies when braking and change the level of electric assistance depending on the desired trade-off between the comfort of the driver and the battery duration. Experimental results show that a control strategy aiming at preserving the SOC (State-Of-Charge), together with regenerative braking, can ensure very long battery duration with no need of recharge. The SOC is kept at about 50% for a long period. Instead, control strategies optimizing the full comfort of the driver by maximizing the level of assistance can ensure real-world e-bicycle missions of about 2 h and 40 km, when the SOC of the battery drops down from 95% to 5%

    Kinect Fusion improvement using depth camera calibration

    Get PDF
    Scene's 3D modelling, gesture recognition and motion tracking are fields in rapid and continuous development which have caused growing demand on interactivity in video-game and e-entertainment market. Starting from the idea of creating a sensor that allows users to play without having to hold any remote controller, the Microsoft Kinect device was created. The Kinect has always attract researchers in different fields, from robotics to Computer Vision (CV) and biomedical engineering as well as third-party communities that have released several Software Development Kit (SDK) versions for Kinect in order to use it not only as a game device but as measurement system. Microsoft Kinect Fusion control libraries (firstly released in March 2013) allow using the device as a 3D scanning and produce meshed polygonal of a static scene just moving the Kinect around. A drawback of this sensor is the geometric quality of the delivered data and the low repeatability. For this reason the authors carried out some investigation in order to evaluate the accuracy and repeatability of the depth measured delivered by the Kinect. The paper will present a throughout calibration analysis of the Kinect imaging sensor, with the aim of establishing the accuracy and precision of the delivered information: a straightforward calibration of the depth sensor in presented and then the 3D data are correct accordingly. Integrating the depth correction algorithm and correcting the IR camera interior and exterior orientation parameters, the Fusion Libraries are corrected and a new reconstruction software is created to produce more accurate models

    a Comparison of Low-Cost Cameras Applied to Fixed Multi-Image Monitoring Systems

    Get PDF
    Abstract. Photogrammetry is becoming a widely used technique for slope monitoring and rock fall data collection. Its scalability, simplicity of components and low costs for hardware and operations makes its use constantly increasing for both civil and mining applications. Recent on site permanent installation of cameras resulted particularly viable for the monitoring of extended surfaces at very reasonable costs. The current work investigates the performances of a customised Raspberry Pi camera module V2 system and three additional low-cost camera systems including an ELP-USB8MP02G camera module, a compact digital camera (Nikon S3100) and a DSLR (Nikon D3). All system, except the Nikon D3, are available at comparable price. The comparison was conducted by collecting images of rock surfaces, one located in Australia and three located in Italy, from distances between 55 and 110 m. Results are presented in terms of image quality and three dimensional reconstruction error. Thereby, the multi-view reconstructions are compared to a reference model acquired with a terrestrial laser scanner

    UAV BLOCK GEOREFERENCING AND CONTROL BY ON-BOARD GNSS DATA

    Get PDF
    Abstract. Unmanned Aerial Vehicles (UAV) are established platforms for photogrammetric surveys in remote areas. They are lightweight, easy to operate and can allow access to remote sites otherwise difficult (or impossible) to be surveyed with other techniques. Very good accuracy can be obtained also with low-cost UAV platforms as far as a reliable ground control is provided. However, placing ground control points (GCP) in these contexts is time consuming and requires accessibility that, in some cases, can be troublesome. RTK-capable UAV platforms are now available at reasonable costs and can overcome most of these problems, requiring just few (or none at all) GCP and still obtaining accurate results. The paper will present a set of experiments performed in cooperation with ARPA VdA (the Environmental Protection Agency of Valle d'Aosta region, Italy) on a test site in the Italian Alps using a Dji Phantom 4 RTK platform. Its goals are: a) compare accuracies obtainable with different calibration procedures (pre- or on-the-job/self-calibration); b) evaluate the accuracy improvements using different number of GCP when the site allows for it; and c) compare alternative positioning modes for camera projection centres determination, (Network RTK, RTK, Post Processing Kinematic and Single Point Positioning)

    Testing accuracy and repeatability of UAV blocks oriented with gnss-supported aerial triangulation

    Get PDF
    UAV Photogrammetry today already enjoys a largely automated and efficient data processing pipeline. However, the goal of dispensing with Ground Control Points looks closer, as dual-frequency GNSS receivers are put on board. This paper reports on the accuracy in object space obtained by GNSS-supported orientation of four photogrammetric blocks, acquired by a senseFly eBee RTK and all flown according to the same flight plan at 80 m above ground over a test field. Differential corrections were sent to the eBee from a nearby ground station. Block orientation has been performed with three software packages: PhotoScan, Pix4D and MicMac. The influence on the checkpoint errors of the precision given to the projection centers has been studied: in most cases, values in Z are critical. Without GCP, the RTK solution consistently achieves a RMSE of about 2-3 cm on the horizontal coordinates of checkpoints. In elevation, the RMSE varies from flight to flight, from 2 to 10 cm. Using at least one GCP, with all packages and all test flights, the geocoding accuracy of GNSS-supported orientation is almost as good as that of a traditional GCP orientation in XY and only slightly worse in Z

    Integrated survey for architectural restoration: A methodological comparison of two case studies

    Get PDF
    A preliminary survey campaign is essential in projects of restoration, urban renewal, rebuilding or promotion of architectural heritage. Today several survey techniques allow full 3D object restitution and modelling that provides a richer description than simple 2D representations. However, the amount of data to collect increases dramatically and a trade-off between efficiency and productivity from one side and assuring accuracy and completeness of the results on the other must be found. Depending on the extent and the complexity of the task, a single technique or a combination of several ones might be employed. Especially when documentation at different scales and with different levels of detail are foreseen, the latter will likely be necessary. The paper describes two architectural surveys in Italy: The old village of Navelli (AQ), affected by the earthquake in 2009, and the two most relevant remains in Codiponte (MS), damaged by the earthquake in 2013, both in the context of a project of restoration and conservation. In both sites, a 3D survey was necessary to represent effectively the objects. An integrated survey campaign was performed in both cases, which consists of a GPS network as support for georeferencing, an aerial survey and a field survey made by laser scanner and close range photogrammetry. The two case studies, thanks to their peculiarities, can be taken as exemplar to wonder if the integration of different surveying techniques is today still mandatory or, considering the technical advances of each technology, it is in fact just optional

    The impact of immediate breast reconstruction on the time to delivery of adjuvant therapy: the iBRA-2 study

    Get PDF
    Background: Immediate breast reconstruction (IBR) is routinely offered to improve quality-of-life for women requiring mastectomy, but there are concerns that more complex surgery may delay adjuvant oncological treatments and compromise long-term outcomes. High-quality evidence is lacking. The iBRA-2 study aimed to investigate the impact of IBR on time to adjuvant therapy. Methods: Consecutive women undergoing mastectomy ± IBR for breast cancer July–December, 2016 were included. Patient demographics, operative, oncological and complication data were collected. Time from last definitive cancer surgery to first adjuvant treatment for patients undergoing mastectomy ± IBR were compared and risk factors associated with delays explored. Results: A total of 2540 patients were recruited from 76 centres; 1008 (39.7%) underwent IBR (implant-only [n = 675, 26.6%]; pedicled flaps [n = 105,4.1%] and free-flaps [n = 228, 8.9%]). Complications requiring re-admission or re-operation were significantly more common in patients undergoing IBR than those receiving mastectomy. Adjuvant chemotherapy or radiotherapy was required by 1235 (48.6%) patients. No clinically significant differences were seen in time to adjuvant therapy between patient groups but major complications irrespective of surgery received were significantly associated with treatment delays. Conclusions: IBR does not result in clinically significant delays to adjuvant therapy, but post-operative complications are associated with treatment delays. Strategies to minimise complications, including careful patient selection, are required to improve outcomes for patients
    • …
    corecore